Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Introduction

Motivation. The computation inefficiency is still a severe issue for vision transformers (ViTs). Existing token pruning methods for redundancy reduction are restricted in two aspects: 1) inapplicability on structured compressed transformers; 2) inability to train from scratch.

Methodology. To address the limitations, we propose a slowfast token evolution approach for dynamic vision transformers (Evo-ViT). We distinguish the informative tokens from the placeholder tokens (uninformative tokens) for each instance in an unstructured and dynamic way, and update the two types of tokens with different computation paths.

Results. Experimental results demonstrate that our approach significantly accelerates various state-of-the-art ViTs while maintaining comparable accuracy. For example, our approach accelerates DeiT-S over 60% but only sacrifices 0.4% accuracy.

Code: https://github.com/YifanXu74/Evo-ViT

reduction via tokens. The third line is our approach.

Yifan Xu^{*1}, Zhijie Zhang^{*2}, Mengdan Zhang³, Kekai Sheng³, Ke Li³, Weiming Dong¹, Liqing Zhang², Changsheng Xu¹, Xing Sun³ ¹NLPR, Institute of Automation, Chinese Academy of Sciences, ² Shanghai Jiao Tong University, ³ Tencent Youtu Lab

Visualization

Layer 5

Layer 9

Layer 11

Acceleration

Aethod		Top-1 Acc.	Throughput	
		(%)	(img/s)	(%)
DeiT-S				
Baseline (Touvron et al. 2021)		79.8	940	-
PS-ViT (Tang et al. 2021)		79.4	1308	43.6
OynamicViT (Rao et al. 2021)		79.3	1479	57.3
SViTE (Chen et al. 2021)		79.2	1215	29.3
A-RED ² (Pan et al. 2021)		79.1	1360	44.7
Evo-ViT (ours)		79.4	1510	60.6
Model	Param	Throughput	Top-1 Acc.	
	(M)	(img/s)	(%)	
LeViT-256	18.9	3357	80.1	
LeViT-256*	19.0	906	81.8	
PVTv2-B2	25.4	687	82.0	
PiT-S	23.5	1266	80.9	
Swin-T	29.4	755	81.3	
CoaT-Lite Small	20.0	550	81.9	
Evo-LeViT-256	19.0	4277	78.8	
Evo-LeViT-256*	19.2	1285	81.1	